
Estimating Biodegradation and Attenuation Rate Constants

This page has been left blank intentionally for printing purposes.

Estimating Biodegradation and Attenuation Rate Constants

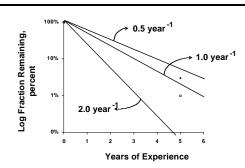
John T. Wilson

Office of Research and Development National Risk Management Research Laboratory U.S.Environmental Protection Agency Cincinnati, Ohio

Why Calculate Rate Constants?

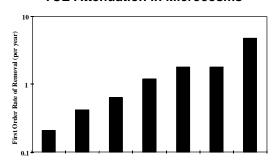
- 1) Calculate concentrations at the point of attainment of standards
- 2) Compare rates at the site to literature to determine if the site is behaving like other sites
- 3) Predict changes caused by changes in flow velocity

Why Calculate Rate Constants?

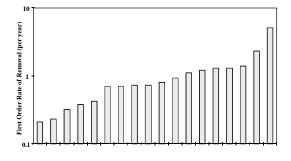

4) To determine how rapidly the ground water plume will clean up after the source is controlled.

Attenuation

First order rate constants?


A first order rate of 1.0 per year equivalent to 2% a week or a half life of 8.3 months

First Order Rate Constants

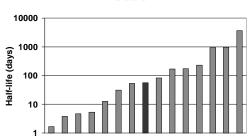


Literature Values for Natural Attenuation in Ground Water

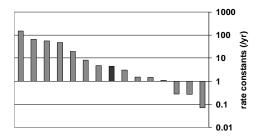
TCE Attenuation in Microcosms

TCE Attenuation in Field

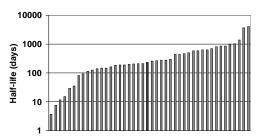
Literature Values for Natural Attenuation in Ground Water

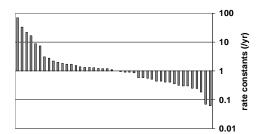

Anaerobic Biodegradation of Organic Chemicals in Groundwater: A Summary of Field and Laboratory Studies (SRC TR-97-0223F)

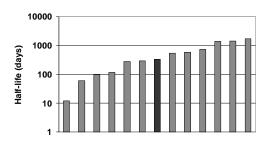
Dallas Aronson

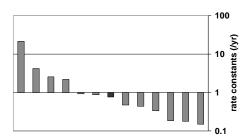

Philip Howard

Environmental Science Center, Syracuse Research Corporation, 6225 Running Ridge Road, North Syracuse, NY 13212-2509


Field Half-Lives for PCE as Reported in Literature


Field Rate Constants for PCE as Reported in Literature


Field Half-Lives for TCE as Reported in Literature


Field Rate Constants for TCE as Reported in Literature

Field Half-Lives for VC as Reported in Literature

Field Rate Constants for VC as Reported in Literature

Field Data

Analyte	Number	Rate (per year)
PCE	4	4.0
TCE	18	1.1
cis-DCE	13	1.6
Vinyl chloride	6	1.3

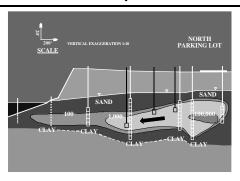
Microcosm Studies

Analyte	Number	Rate (per year)
TCE	7	1.6
cis-DCE	3	4.3
Vinyl chloride	Fe III O ₂	4.0 4.2
1,1,1-TCA	3	2.0

Seminar Series on Monitored Natural Attenuation for Ground Water

St. Joseph, Michigan

St. Joseph Site

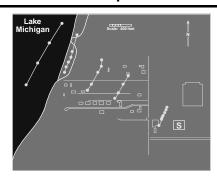

Case Study

Natural Attenuation of TCE

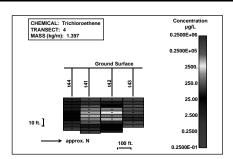
Extracting Rate Constants

St. Joseph Site

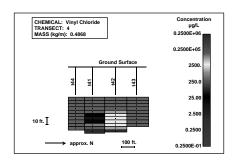
Vertical Transects (TRANSECTOR)

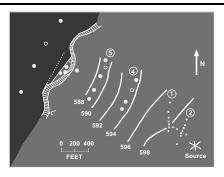

- Transects form logical units for studying sites
- Data in this form can be displayed in two-dimensions:

By representing the data as rectangles around each measurement point


(chemical mass per unit thickness = porosity x concentration x length x width)

The transects provide much more spatial resolution than is usually available. They will be taken as ground truth to evaluate other approaches.


St. Joseph Site


St. Joseph Site

St. Joseph Site

St. Joseph Site

Transect-Averaged Concentrations (μg/L)
Dissolved Oxygen below 2.0 mg/L

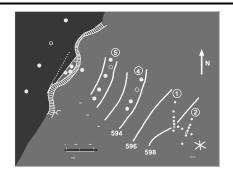
Chemical	Transect 2	Transect 4	Transect 5	Lake Transect
TCE	7411	864	30.1	1.4
c-DCE	9117	1453	281	(0.80)
t-DCE	716	34.4	5.39	1.1
1,1-DCE	339	24.3	2.99	nd

Transect-Averaged Concentrations (μg/L)
Dissolved Oxygen below 2.0 mg/L

Chemical	Transect 2	Transect 4	Transect 5	Lake Transect
TCE	7411	864	30.1	1.4
c-DCE	9117	1453	281	(0.80)
Vinyl Chloride	998	473	97.7	(0.16)

Transect-Averaged Concentrations (μg/L)
Dissolved Oxygen below 2.0 mg/L

Chemical	Transect 2	Transect 4	Transect 5	Lake Transect
Ethene	480	297	24.2	no data
Sum of the Ethenes	19100	3150	442	3.5
Chloride	65073	78505	92023	44418


$$\ln\left(\frac{c_{j+1}}{c_i}\right) = \lambda^2 t$$

 $\mathbf{c}_{\mathbf{j+1}}$ = average concentration at the down gradient transect

c_i = average concentration at the up gradient transect

 λ = apparent loss coefficient from transect j to j+1

2 t = travel time, determined from the seepage velocity, retardation factor and the distance

For TCE from transect 2 to 4

 2 t = 340 weeks

 $c_{i+1} = 5.04 \times 10^{-4} \text{ kg/m}^3$

 $c_i = 6.70 \times 10^{-3} \text{ kg/m}^3$

 $\lambda = -0.38 / \text{year}$

For TCE from transect 4 to 5

 2 t = 145 weeks

 $c_{i+1} = 1.44 \times 10^{-5} \text{ kg/m}^3$

 $c_i = 5.04 \times 10^{-4} \text{ kg/m}^3$

 $\lambda = -1.3 / \text{year}$

Transect Pair	TCE	c-DCE	Vinyl Chloride
	Appar	ent change (p	er year)
2 to 4	- 0.38	- 0.50	- 0.18
4 to 5	- 1.3	- 0.83	- 0.88
5 to Lake	- 0.94	- 3.1	- 2.2

Calculate Rate Constants

The next slides are a comparison of reconstructed hypothetical wells using data from the Keck Slotted Hollow Stem Auger technique to concentrations in real monitoring wells with short screens.

The whole approach requires properly constructed, properly installed, and properly maintained monitoring wells.

Transect 2

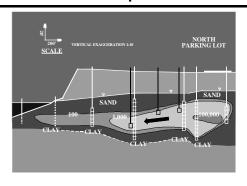
Compound	Reconstructed from slotted auger samples	RI Permanent Monitoring Well
	T-2-5	OW-19
	(mg/	(L)
TCE	12.1	1.64
cis-DCE	33.7 4.63	
Vinyl Chloride	2.3 2.4	
Chloride	89.7	84.6

Transect 1

Compound	Reconstructed from slotted auger samples T-1-4	RI Permanent Monitoring Well OW-18
	(mg/	'L)
TCE	3.4	0.201
cis-DCE	11.2	0.413
Vinyl Chloride	3.7	0.922
Chloride	78.6	84.6

Transect 4

Compound	Reconstructed RI Permanent from Monitoring Well slotted auger samples		RI Permanent Monitoring Well	
	T-4-2	OW-29	OW-31	
		(mg/L)		
TCE	1.3	<0.001	<0.001	
cis-DCE	2.3	0.312	0.255	
Vinyl Chloride	0.51	0.423	0.120	
Chloride	98.9	31.1	81.1	


Transect 5

Compound	Reconstructed from slotted auger samples RI Permanent Monitoring Well		RI Permanent Monitoring Well
	T-5-3	OW-32	OW-31
		(mg/L)	
TCE	0.035	0.0024	<0.001
cis-DCE	0.22	<0.001	0.255
Vinyl Chloride	0.063	<0.001	0.120
Chloride	63.6	16.2	81.1

Calculate Rate Constants

The next figure compares the screened intervals of the permanent monitoring wells to the intervals sampled by the Keck Slotted Auger technique.

St. Joseph Site

Calculate Rate Constants

The permanent wells may have been screened above or below the centerline "hot spot".

The permanent wells would have overestimated natural attenuation

We will use reconstructed concentrations from the Keck survey instead of the permanent monitoring wells.

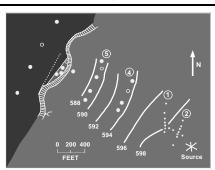
Methods to Calculate Rate Constants

- 1) Method of Buscheck and Alcantar (1995)
- 2) Normalize to a conservative tracer
- 3) Calibrate a mathematical model

First-Order Decay Rate for a Steady State Plume

$$\lambda = \frac{V_c}{4\alpha_x} \left(\left[1 + 2 \alpha_x \left(\frac{k}{V_x} \right) \right]^2 - 1 \right)$$

where:


λ = first order biodegradation rate constant (approximate)

v_c = retarded contaminant velocity in the x-direcion

 α_x = dispersivity

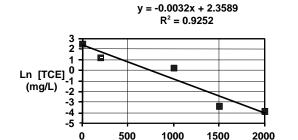
k/v_x = slope of line formed by making a log-linear plot of contaminant concentration vs. distance downgradient along flow path

St. Joseph Site

Sampling Locations Along Centerline of Plume - St. Joseph

	T-2-5 0 ft	T-1-4 200 ft	T-4-2 1000 ft mg/L	T-5-3 1500 ft	55AE 2000 ft
			9/ =		
TCE	12.1	3.4	1.3	0.035	0.022
cis-DCE	33.7	11.2	2.3	0.22	0.42
Vinyl chloride	2.3	3.7	0.51	0.063	0.070
Organic chlorine	35.8	11.2	3.0	0.23	0.37

Method of Buscheck and Alcantar (1995)


Linear Regression of Ln conc. TCE against distance along the flow path

Slope of the regression is k/Vx

Method of Buscheck and Alcantar (1995)

Distance (ft)	TCE (mg/L)	Ln conc. TCE
0	12.1	2.49
200	3.4	1.22
1000	1.3	0.262
1500	0.035	- 3.35
2000	0.022	- 3.82

St. Joseph Site

Distance from Source (feet)

Method of Buscheck and Alcantar (1995)

$$R = 1 + Koc foc \rho / \theta$$

Koc = 120 mL/g

foc = 0.001

Porosity = 0.3

Bulk Density = 1.7 g/cm³

Retardation = 1.7

Method of Buscheck and Alcantar (1995)

Contaminant velocity (V_c) equals seepage velocity divided by the retardation factor

 $V_c = 1.3 \, \text{ft per day} / 1.7$

= 0.76 ft per day

= 277 ft per year

Method of Buscheck and Alcantar (1995)

When

V_c = 277 ft per year

 $\alpha = 100 \text{ feet}$

X

 $k/V_x = -0.0032$

Then

 $\lambda = -0.00165 \text{ per day}$

= - 0.602 per year

Normalize to a Conservative Tracer

Will use the sum of chloride ion and organic chlorine as a tracer

Normalize to a Conservative Tracer

Mass Fraction Chlorine

Multiply the concentration of chlorinated organic analytes by their mass fraction of chlorine

Sum the concentrations of chloride ion and organic chlorine in each chlorinated analyte

Compound	Daltons	Daltons Chlorine	Mass Fraction Chlorine
PCE	166	142	0.855
TCE	137.5	106.5	0.810
DCE	97	71	0.732
Vinyl chloride	62.5	35.5	0.568

Sampling Locations Along Centerline of Plume - St. Joseph

	T-2-5 0 ft	T-1-4 200 ft	T-4-2 1000 ft mg/L	T-5-3 1500 ft	55AE 2000 ft
Chloride	89.7	78.6	98.9	63.6	54.7
Organic Chlorine	35.8	11.2	3.0	0.23	0.37
Total Chlorine & Chloride	125.5	89.8	101.9	63.8	55.1

Normalize to a Conservative Tracer

Multiply the concentration of analyte down gradient by the dilution of the tracer to estimate the concentration expected in the absence of dilution

Calculation of Corrected Concentration

Where flow of ground water is from point A to point B:

C = corrected concentration of contaminant at point B B, Corr

C = measured concentration of contaminant at point B

Chloride A = measured concentration of tracer at point A

Chloride B = measured concentration of tracer at point B

Normalize to a Conservative Tracer

From T-2-5 to 55AE, for TCE

Corrected = $\frac{0.022 \text{ mg/L } (125.5 \text{ mg/L})}{(55.1 \text{ mg/L})}$

= 0.050 mg/L

First-Order Decay

Normalize to a Conservative Tracer

 $C = C_0 e^{kt}$

where:

C = contaminant concentration at time t

C₀ = initial contaminant concentration

k = first-order rate constant

From T-2-5 to 55AE, for TCE

$$C = C e^{kt}$$

$$(0.050/12.1) = e^{kt}$$

Normalize to a Conservative Tracer

Normalize to a Conservative Tracer

ln(0.050 / 12.1) = kt

-5.49 = kt

k = -5.49/t

The locations are 2,000 feet apart.

If the seepage velocity is 1.3 feet per day,

the retarded TCE velocity = 1.3 / 1.7 feet per day

= 0.76 feet per day

Normalize to a Conservative Tracer

Normalize to a Conservative Tracer

The travel time = 2,000 feet / 0.76 feet per day = 2,631 days

k = -5.49 / 2,631 days =-0.00208 / day =-0.76 / year

Comparison of Rate Constants

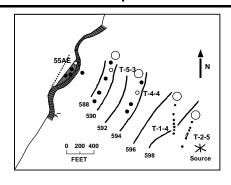
Normalize to a conservative tracer = -0.76 per year

Method of Buscheck and Alcantar = -0.602 per year

Transect comparisons

- = -0.94 per year
- = -1.3 per year
- = -0.38 per year

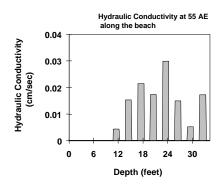
Calibrate BIOSCREEN


West Plume at St. Joseph, Michigan

See following page for a full-size version of the slide.

Calibrate BIOSCREEN

Use the next figure to estimate the hydraulic gradient

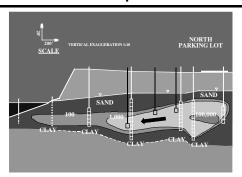

St. Joseph Site

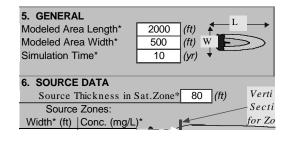
The average hydraulic conductivity is 50 feet per day or 0.02 cm per sec.

Table is missing but will be added in the near future.

Thank you for your patience.

1. HYDROGEOLOGY		
Seepage Velocity*	Vs	482.8
or		↑ or
Hydraulic Conductivity	K	2.0E-02
Hydraulic Gradient	i	0.007
Porosity	n	0.3
2. DISPERSION		
Longitudinal Dispersivity*	alpha x	32.3
Transverse Dispersivity*	alpha y	3.2
Vertical Dispersivity*	alpha z	0.0
or		↑ or
Estimated Plume Length	Lp	2000

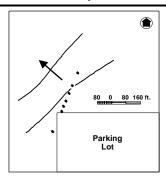

4. BIODEGRADATION 1st Order Decay Coeff* lambda 6.0E-1 (per yr) or **♦** or Solute Half-Life t-half 1.15 (year) or Instantaneous Reaction Model Delta Oxygen* DO 0 (mg/L) Delta Nitrate* NO3 0 (mg/L) Observed Ferrous Iron* Fe2+ 0 (mg/L) Delta Sulfate* S04 0 (mg/L) Observed Methane* CH4 0 (mg/L)

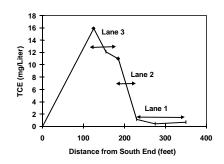

Calibrate BIOSCREEN

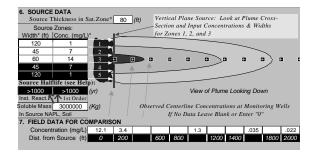
Use the next figure to estimate the geometry of the plume.

The vertical scale bar in the upper left corner represents 20 feet.

St. Joseph Site

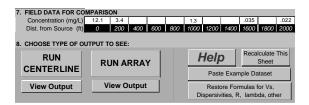



Calibrate BIOSCREEN


St. Joseph Site

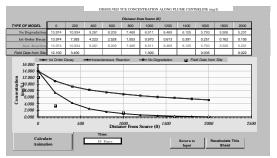
Use the next figure to set up the lanes in BIOSCREEN for TCE attenuation.

Sampling locations along upstream transect
T2-7 T2-2 T2-5 T2-1 T2-6 T2-4 T2-2
Distance from south end of transect, feet
0 125 155 185 230 275 350
Average conc. TCE, mg/liter
0.02 15.9 12.1 11.0 1.1 0.39 0.68



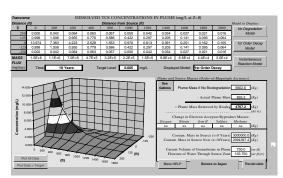
Calibrate BIOSCREEN

Use the next table to set up field data in BIOSCREEN for attenuation of TCE.


Sampling Locations Along Centerline of Plume - St. Joseph

	T-2-5 0 ft	T-1-4 200 ft	T-4-2 1000 ft mg/L	T-5-3 1500 ft	55AE 2000 ft
TCE	12.1	3.4	1.3	0.035	0.022
cis-DCE	33.7	11.2	2.3	0.22	0.42
Vinyl chloride	2.3	3.7	0.51	0.063	0.070

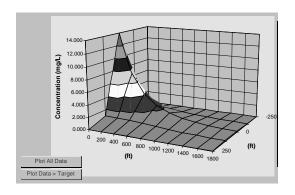
Calibrate BIOSCREEN

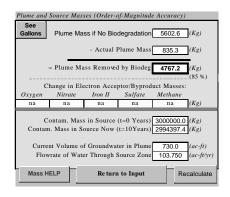

Results from RUN CENTERLINE

See following page(s) for a full-size version of the slide.

Calibrate BIOSCREEN

Results from RUN ARRAY


See following page(s) for a full-size version of the slide.


Table is missing but will be added in the near future.

Thank you for your patience.

Table is missing but will be added in the near future.

Thank you for your patience.

Calibrate BIOSCREEN

1.0 acre foot per year =

3.4 cubic meters per day

0.62 gallons per minute

100 acre feet per year =

0.09 million gallons per day

Sources of information

BIOSCREEN

BIOSCREEN and BIOPLUME III are available on the NRMRL/SPRD Web page:

http://www.epa.gov/ada/kerrlab.html

Information by Phone, FAX, or Mail

• NCEPI

- Order documents and databases with "EPA" document numbers free of charge
- FAX requests to 513-489-8695
- Mail requests to NCEPI, PO Box 42419, Cincinnati, OH 45242

NTIS

- Purchase products with "PB" document numbers
- Order by phone at 703-487-4650 or 800-553-NTIS (for rush service)

TIO Information Online

- Clean-up Information (CLU-IN) System
 - WWW site
 - http://clu-in.com
 - Go to "Publications and Software" area to download publications and databases